

1

Politechnika Krakowska im. Tadeusza Kościuszki

EYE TRACKER STUDY OF RETRORELFECTIVITY PERCEPTION BY DRIVERS

Tomasz E. Burghardt

M. Swarovski GmbH; Amstetten, Austria Research and Development

Anton Pashkevich, Eduard Bairamov

Politechnika Krakowska; Kraków, Poland

International Symposium on Traffic Signs & Pavement Markings Zagreb, Croatia | Oct 3-4, 2019

Road markings as visual guidelines

Politechnika Krakowska im. Tadeusza Kościuszki

Zagreb, Croatia | Oct 3-4, 2019

Test stretch

SWARCODE Road Marking Systems

Politechnika Krakowska im. Tadeusza Kościuszki

Test stretch – renewal of structured cold plastic:

- STANDARD low R_L: Solvent-based paint + standard glass beads
- PREMIUM high R_L: Waterborne paint + premium glass beads
- Poland, voivodeship road 786, two-lanes, 3.05-3.25 m each, AADT 4072, test stretch 23 km
- Edge and centre (single or double) markings (each 12 cm wide)

System		Standard			Premium	
Line	Right	Centre	Left	Right	Centre	Left
R _L [mcd/m²/lx]	202	278	218	319	618	331
R _L [mcd/m²/lx] after winter	182	112	170	265	236	263

Two-year marking durability with premium (high R_L) system

First eye tracker study on retroreflectivity of road markings in the field

Eye tracking

- Data per 12-18 test participants (amongst 25), 20-23 years old, licensed for 3-5 years
 - Analysis of similar road stretches (straight, no street lights)
 - Removed data for superfluous lighting (preceding or passing vehicle, lighted stretches, etc.)
- Gazes at road markings with high R_L (618 mcd/m²/lx) vs. low R_L (278 mcd/m²/lx)
 - Normalised for 100 m stretches
 - Baseline: gazes during day time
 - Major difference only in R_L of centre line

Stationary eye tracker

- Mounted on steering column
 - Data loss with head movement (15-28%)

Visual field division

5 zones analysed

5

Politechnika Krakowska im. Tadeusza Kościuszki

Average gazes per 100 m stretch

Low R_L

High R_L

Night time

Baseline

International Symposium on Traffic Signs & Pavement Markings Zagreb, Croatia | Oct 3-4, 2019

Results eye tracker study

8

Gazes at night

(versus baseline: gazes during daytime = 1.00)

Highly desired – road far ahead (±100 m) guides steering

Shift of gazes toward high R_L

Results eye tracker study

9

Politechnika Krakowska im. Tadeusza Kościuszki

	Low R _L	High R _L		
Gazes at road marking at night	45% of daytime gazes (centre line – 10% of daytime gazes)	16% of daytime gazes (centre line – 47% of daytime gazes)		
Gazes at centre line (difference in R _L)	Very low observance at night (0.2% gazes) and low at day (1.5% gazes) Seven times <u>less gazes at night</u> than during daytime	Similar observance at night and day 1.3-2.3% of all gazes <i>Fifteen times <u>more gazes</u> at night than</i> <i>during the day</i>		
	Shift of gazes to line with high $R_L = R_L$ guides steering			
Gazes at road ahead		Twice more gazes at far field than in case of low R _L		
Gazes not at the road	36% at night, 45% during daytime	8% at night, 39% during daytime		
	High R _L brought advantageous shift of focus to the road far ahead			
	International Symposium on Traffic Signs & Pavement	Markings Arbe		

Conclusions

Politechnika Krakowska im. Tadeusza Kościuszki

Eye tracker study of drivers in the field – day and night

- No prior reported similar experiments
- Compared road markings with high R_L (618 mcd/m²/lx) and low R_L (278 mcd/m²/lx) at centre line
- Gazes, normalized to 100 m stretches, as compared to daytime baseline

Results (at night, with high R_L)

- Shift from edge (low R_L) to centre line (high R_L)
 - Retroreflectivity used for guidance
- More gazes at far field
- Less gazes not at the road

Effects on road safety

- Unknown. No studies so far
- Additional research needed and planned

11

Politechnika Krakowska im. Tadeusza Kościuszki

EYE TRACKER STUDY OF RETRORELFECTIVITY PERCEPTION BY DRIVERS

Tomasz E. Burghardt

M. Swarovski GmbH; Amstetten, Austria tomasz.burghardt@swarco.com +43 664 8878 4307

Anton Pashkevich, Eduard Bairamov

Politechnika Krakowska; Kraków, Poland apashkevich@pk.edu.pl +48 695 324 575

